Estimates of lightning NOx production from GOME satellite observations
نویسنده
چکیده
Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME) satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2). A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme) to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme) to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal correCorrespondence to: K. F. Boersma ([email protected]) lation methods, from cloud-free and cloud-covered observations, and from two different lightning parameterizations. Accounting for a wide variety of random and possible systematic errors, we estimate the global NOx production from lightning to be in the range 1.1–6.4 Tg N in 1997.
منابع مشابه
Estimates of lightning NOx production
Estimates of lightning NOx production from GOME satellite observations K. F. Boersma, H. J. Eskes, E. W. Meijer, and H. M. Kelder Royal Netherlands Meteorological Institute, De Bilt, The Netherlands Received: 17 February 2005 – Accepted: 4 April 2005 – Published: 13 May 2005 Correspondence to: K. F. Boersma ([email protected]) © 2005 Author(s). This work is licensed under a Creative Commons License.
متن کاملEstimating the NOx produced by lightning from GOME and NLDN data: a case study in the Gulf of Mexico
Nitrogen oxides (NOx=NO+NO2) play an important role in tropospheric chemistry, in particular in catalytic ozone production. Lightning provides a natural source of nitrogen oxides, dominating the production in the tropical upper troposphere, with strong impact on tropospheric ozone and the atmosphere’s oxidizing capacity. Recent estimates of lightning produced NOx (LNOx) are of the order of 5 Tg...
متن کاملEvidence of lightning NOx and convective transport of pollutants in satellite observations over North America
Column observations of NO2 by GOME and CO by MOPITT over North America and surrounding oceans for April 2000 are analyzed using a regional chemical transport model. Transient enhancements in these measurements due to lightning NOx production or convective transport are examined. Evidence is found for lightning enhancements of NO2 over the continent and western North Atlantic and for convective ...
متن کاملRemote sensed and in situ constraints on processes affecting tropical tropospheric ozone
We use a global chemical transport model (GEOSChem) to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O3, NO2, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O3, CO, and relative ...
متن کاملAnthropogenic emissions of NOx over China: Reconciling the difference of inverse modeling results using GOME2 and OMI measurements
Inverse modeling using satellite observations of nitrogen dioxide (NO2) columns has been extensively used to estimate nitrogen oxides (NOx) emissions in China. Recently, the Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone Monitoring Instrument (OMI) provide independent global NO2 column measurements on a nearly daily basis at around 9:30 and 13:30 local time across the equator, respecti...
متن کامل